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Abstract
Raft is a consensus algorithm for managing a replicated

log. It produces a result equivalent to (multi-)Paxos, and

it is as efficient as Paxos, but its structure is different

from Paxos; this makes Raft more understandable than

Paxos and also provides a better foundation for build-

ing practical systems. In order to enhance understandabil-

ity, Raft separates the key elements of consensus, such as

leader election, log replication, and safety, and it enforces

a stronger degree of coherency to reduce the number of

states that must be considered. Results from a user study

demonstrate that Raft is easier for students to learn than

Paxos. Raft also includes a new mechanism for changing

the cluster membership, which uses overlapping majori-

ties to guarantee safety.

1 Introduction
Consensus algorithms allow a collection of machines

to work as a coherent group that can survive the fail-

ures of some of its members. Because of this, they play a

key role in building reliable large-scale software systems.

Paxos [15, 16] has dominated the discussion of consen-

sus algorithms over the last decade: most implementations

of consensus are based on Paxos or influenced by it, and

Paxos has become the primary vehicle used to teach stu-

dents about consensus.

Unfortunately, Paxos is quite difficult to understand, in

spite of numerous attempts to make it more approachable.

Furthermore, its architecture requires complex changes

to support practical systems. As a result, both system

builders and students struggle with Paxos.

After struggling with Paxos ourselves, we set out to

find a new consensus algorithm that could provide a bet-

ter foundation for system building and education. Our ap-

proach was unusual in that our primary goal was under-

standability: could we define a consensus algorithm for

practical systems and describe it in a way that is signifi-

cantly easier to learn than Paxos? Furthermore, we wanted

the algorithm to facilitate the development of intuitions

that are essential for system builders. It was important not

just for the algorithm to work, but for it to be obvious why

it works.

The result of this work is a consensus algorithm called

Raft. In designing Raft we applied specific techniques to

improve understandability, including decomposition (Raft

separates leader election, log replication, and safety) and
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state space reduction (relative to Paxos, Raft reduces the

degree of nondeterminism and the ways servers can be in-

consistent with each other). A user study with 43 students

at two universities shows that Raft is significantly easier

to understand than Paxos: after learning both algorithms,

33 of these students were able to answer questions about

Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-

gorithms (most notably, Oki and Liskov’s Viewstamped

Replication [29, 22]), but it has several novel features:

• Strong leader: Raft uses a stronger form of leader-

ship than other consensus algorithms. For example,

log entries only flow from the leader to other servers.

This simplifies the management of the replicated log

and makes Raft easier to understand.

• Leader election: Raft uses randomized timers to

elect leaders. This adds only a small amount of

mechanism to the heartbeats already required for any

consensus algorithm, while resolving conflicts sim-

ply and rapidly.

• Membership changes: Raft’s mechanism for

changing the set of servers in the cluster uses a new

joint consensus approach where the majorities of

two different configurations overlap during transi-

tions. This allows the cluster to continue operating

normally during configuration changes.

We believe that Raft is superior to Paxos and other con-

sensus algorithms, both for educational purposes and as a

foundation for implementation. It is simpler and more un-

derstandable than other algorithms; it is described com-

pletely enough to meet the needs of a practical system;

it has several open-source implementations and is used

by several companies; its safety properties have been for-

mally specified and proven; and its efficiency is compara-

ble to other algorithms.

The remainder of the paper introduces the replicated

state machine problem (Section 2), discusses the strengths

and weaknesses of Paxos (Section 3), describes our gen-

eral approach to understandability (Section 4), presents

the Raft consensus algorithm (Sections 5–8), evaluates

Raft (Section 9), and discusses related work (Section 10).

2 Replicated state machines
Consensus algorithms typically arise in the context of

replicated state machines [37]. In this approach, state ma-

chines on a collection of servers compute identical copies

of the same state and can continue operating even if some

of the servers are down. Replicated state machines are
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Figure 1: Replicated state machine architecture. The con-

sensus algorithm manages a replicated log containing state

machine commands from clients. The state machines process

identical sequences of commands from the logs, so they pro-

duce the same outputs.

used to solve a variety of fault tolerance problems in dis-

tributed systems. For example, large-scale systems that

have a single cluster leader, such as GFS [8], HDFS [38],

and RAMCloud [33], typically use a separate replicated

state machine to manage leader election and store config-

uration information that must survive leader crashes. Ex-

amples of replicated state machines include Chubby [2]

and ZooKeeper [11].

Replicated state machines are typically implemented

using a replicated log, as shown in Figure 1. Each server

stores a log containing a series of commands, which its

state machine executes in order. Each log contains the

same commands in the same order, so each state ma-

chine processes the same sequence of commands. Since

the state machines are deterministic, each computes the

same state and the same sequence of outputs.

Keeping the replicated log consistent is the job of the

consensus algorithm. The consensus module on a server

receives commands from clients and adds them to its log.

It communicates with the consensus modules on other

servers to ensure that every log eventually contains the

same requests in the same order, even if some servers fail.

Once commands are properly replicated, each server’s

state machine processes them in log order, and the out-

puts are returned to clients. As a result, the servers appear

to form a single, highly reliable state machine.

Consensus algorithms for practical systems typically

have the following properties:

• They ensure safety (never returning an incorrect re-

sult) under all non-Byzantine conditions, including

network delays, partitions, and packet loss, duplica-

tion, and reordering.

• They are fully functional (available) as long as any

majority of the servers are operational and can com-

municate with each other and with clients. Thus, a

typical cluster of five servers can tolerate the failure

of any two servers. Servers are assumed to fail by

stopping; they may later recover from state on stable

storage and rejoin the cluster.

• They do not depend on timing to ensure the consis-

tency of the logs: faulty clocks and extreme message

delays can, at worst, cause availability problems.

• In the common case, a command can complete as

soon as a majority of the cluster has responded to a

single round of remote procedure calls; a minority of

slow servers need not impact overall system perfor-

mance.

3 What’s wrong with Paxos?
Over the last ten years, Leslie Lamport’s Paxos proto-

col [15] has become almost synonymous with consensus:

it is the protocol most commonly taught in courses, and

most implementations of consensus use it as a starting

point. Paxos first defines a protocol capable of reaching

agreement on a single decision, such as a single replicated

log entry. We refer to this subset as single-decree Paxos.

Paxos then combines multiple instances of this protocol to

facilitate a series of decisions such as a log (multi-Paxos).

Paxos ensures both safety and liveness, and it supports

changes in cluster membership. Its correctness has been

proven, and it is efficient in the normal case.

Unfortunately, Paxos has two significant drawbacks.

The first drawback is that Paxos is exceptionally diffi-

cult to understand. The full explanation [15] is notori-

ously opaque; few people succeed in understanding it, and

only with great effort. As a result, there have been several

attempts to explain Paxos in simpler terms [16, 20, 21].

These explanations focus on the single-decree subset, yet

they are still challenging. In an informal survey of atten-

dees at NSDI 2012, we found few people who were com-

fortable with Paxos, even among seasoned researchers.

We struggled with Paxos ourselves; we were not able to

understand the complete protocol until after reading sev-

eral simplified explanations and designing our own alter-

native protocol, a process that took almost a year.

We hypothesize that Paxos’ opaqueness derives from

its choice of the single-decree subset as its foundation.

Single-decree Paxos is dense and subtle: it is divided into

two stages that do not have simple intuitive explanations

and cannot be understood independently. Because of this,

it is difficult to develop intuitions about why the single-

decree protocol works. The composition rules for multi-

Paxos add significant additional complexity and subtlety.

We believe that the overall problem of reaching consensus

on multiple decisions (i.e., a log instead of a single entry)

can be decomposed in other ways that are more direct and

obvious.

The second problem with Paxos is that it does not pro-

vide a good foundation for building practical implemen-

tations. One reason is that there is no widely agreed-

upon algorithm for multi-Paxos. Lamport’s descriptions

are mostly about single-decree Paxos; he sketched possi-

ble approaches to multi-Paxos, but many details are miss-

ing. There have been several attempts to flesh out and op-

timize Paxos, such as [26], [39], and [13], but these differ
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from each other and from Lamport’s sketches. Systems

such as Chubby [4] have implemented Paxos-like algo-

rithms, but in most cases their details have not been pub-

lished.

Furthermore, the Paxos architecture is a poor one for

building practical systems; this is another consequence of

the single-decree decomposition. For example, there is lit-

tle benefit to choosing a collection of log entries indepen-

dently and then melding them into a sequential log; this

just adds complexity. It is simpler and more efficient to

design a system around a log, where new entries are ap-

pended sequentially in a constrained order. Another prob-

lem is that Paxos uses a symmetric peer-to-peer approach

at its core (though it eventually suggests a weak form of

leadership as a performance optimization). This makes

sense in a simplified world where only one decision will

be made, but few practical systems use this approach. If a

series of decisions must be made, it is simpler and faster

to first elect a leader, then have the leader coordinate the

decisions.

As a result, practical systems bear little resemblance

to Paxos. Each implementation begins with Paxos, dis-

covers the difficulties in implementing it, and then de-

velops a significantly different architecture. This is time-

consuming and error-prone, and the difficulties of under-

standing Paxos exacerbate the problem. Paxos’ formula-

tion may be a good one for proving theorems about its cor-

rectness, but real implementations are so different from

Paxos that the proofs have little value. The following com-

ment from the Chubby implementers is typical:

There are significant gaps between the description of

the Paxos algorithm and the needs of a real-world

system. . . . the final system will be based on an un-

proven protocol [4].

Because of these problems, we concluded that Paxos

does not provide a good foundation either for system

building or for education. Given the importance of con-

sensus in large-scale software systems, we decided to see

if we could design an alternative consensus algorithm

with better properties than Paxos. Raft is the result of that

experiment.

4 Designing for understandability
We had several goals in designing Raft: it must provide

a complete and practical foundation for system building,

so that it significantly reduces the amount of design work

required of developers; it must be safe under all conditions

and available under typical operating conditions; and it

must be efficient for common operations. But our most

important goal—and most difficult challenge—was un-

derstandability. It must be possible for a large audience to

understand the algorithm comfortably. In addition, it must

be possible to develop intuitions about the algorithm, so

that system builders can make the extensions that are in-

evitable in real-world implementations.

There were numerous points in the design of Raft

where we had to choose among alternative approaches.

In these situations we evaluated the alternatives based on

understandability: how hard is it to explain each alterna-

tive (for example, how complex is its state space, and does

it have subtle implications?), and how easy will it be for a

reader to completely understand the approach and its im-

plications?

We recognize that there is a high degree of subjectiv-

ity in such analysis; nonetheless, we used two techniques

that are generally applicable. The first technique is the

well-known approach of problem decomposition: wher-

ever possible, we divided problems into separate pieces

that could be solved, explained, and understood relatively

independently. For example, in Raft we separated leader

election, log replication, safety, and membership changes.

Our second approach was to simplify the state space

by reducing the number of states to consider, making the

system more coherent and eliminating nondeterminism

where possible. Specifically, logs are not allowed to have

holes, and Raft limits the ways in which logs can become

inconsistent with each other. Although in most cases we

tried to eliminate nondeterminism, there are some situ-

ations where nondeterminism actually improves under-

standability. In particular, randomized approaches intro-

duce nondeterminism, but they tend to reduce the state

space by handling all possible choices in a similar fashion

(“choose any; it doesn’t matter”). We used randomization

to simplify the Raft leader election algorithm.

5 The Raft consensus algorithm
Raft is an algorithm for managing a replicated log of

the form described in Section 2. Figure 2 summarizes the

algorithm in condensed form for reference, and Figure 3

lists key properties of the algorithm; the elements of these

figures are discussed piecewise over the rest of this sec-

tion.

Raft implements consensus by first electing a distin-

guished leader, then giving the leader complete responsi-

bility for managing the replicated log. The leader accepts

log entries from clients, replicates them on other servers,

and tells servers when it is safe to apply log entries to

their state machines. Having a leader simplifies the man-

agement of the replicated log. For example, the leader can

decide where to place new entries in the log without con-

sulting other servers, and data flows in a simple fashion

from the leader to other servers. A leader can fail or be-

come disconnected from the other servers, in which case

a new leader is elected.

Given the leader approach, Raft decomposes the con-

sensus problem into three relatively independent subprob-

lems, which are discussed in the subsections that follow:

• Leader election: a new leader must be chosen when

an existing leader fails (Section 5.2).

• Log replication: the leader must accept log entries
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Invoked by candidates to gather votes (§5.2).

Arguments:

term candidate’s term
candidateId candidate requesting vote

lastLogIndex index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)

Results:

term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)

2. If votedFor is null or candidateId, and candidate’s log is at

least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

RequestVote RPC

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:
term leader’s term

leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones

prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm (§5.3)

3. If an existing entry conflicts with a new one (same index

but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log
5. If leaderCommit > commitIndex, set commitIndex =

min(leaderCommit, index of last new entry)

AppendEntries RPC

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to 0
on first boot, increases monotonically)

votedFor candidateId that received vote in current

term (or null if none)
log[] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:
commitIndex index of highest log entry known to be

committed (initialized to 0, increases

monotonically)
lastApplied index of highest log entry applied to state

machine (initialized to 0, increases

monotonically)

Volatile state on leaders:

(Reinitialized after election)
nextIndex[] for each server, index of the next log entry

to send to that server (initialized to leader

last log index + 1)
matchIndex[] for each server, index of highest log entry

known to be replicated on server
(initialized to 0, increases monotonically)

State

All Servers:
• If commitIndex > lastApplied: increment lastApplied, apply

log[lastApplied] to state machine (§5.3)
• If RPC request or response contains term T > currentTerm:

set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):
• Respond to RPCs from candidates and leaders

• If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:

convert to candidate

Candidates (§5.2):

• On conversion to candidate, start election:

• Increment currentTerm
• Vote for self

• Reset election timer

• Send RequestVote RPCs to all other servers
• If votes received from majority of servers: become leader

• If AppendEntries RPC received from new leader: convert to
follower

• If election timeout elapses: start new election

Leaders:
• Upon election: send initial empty AppendEntries RPCs

(heartbeat) to each server; repeat during idle periods to
prevent election timeouts (§5.2)

• If command received from client: append entry to local log,

respond after entry applied to state machine (§5.3)
• If last log index ≥ nextIndex for a follower: send

AppendEntries RPC with log entries starting at nextIndex
• If successful: update nextIndex and matchIndex for

follower (§5.3)

• If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§5.3)

• If there exists an N such that N > commitIndex, a majority
of matchIndex[i] ≥ N, and log[N].term == currentTerm:

set commitIndex = N (§5.3, §5.4).

Rules for Servers

Figure 2: A condensed summary of the Raft consensus algorithm (excluding membership changes and log compaction). The server

behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such as §5.2

indicate where particular features are discussed. A formal specification [31] describes the algorithm more precisely.
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Election Safety: at most one leader can be elected in a

given term. §5.2

Leader Append-Only: a leader never overwrites or deletes

entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same

index and term, then the logs are identical in all entries

up through the given index. §5.3

Leader Completeness: if a log entry is committed in a

given term, then that entry will be present in the logs

of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry

at a given index to its state machine, no other server

will ever apply a different log entry for the same index.

§5.4.3

Figure 3: Raft guarantees that each of these properties is true

at all times. The section numbers indicate where each prop-

erty is discussed.

from clients and replicate them across the cluster,

forcing the other logs to agree with its own (Sec-

tion 5.3).

• Safety: the key safety property for Raft is the State

Machine Safety Property in Figure 3: if any server

has applied a particular log entry to its state machine,

then no other server may apply a different command

for the same log index. Section 5.4 describes how

Raft ensures this property; the solution involves an

additional restriction on the election mechanism de-

scribed in Section 5.2.

After presenting the consensus algorithm, this section dis-

cusses the issue of availability and the role of timing in the

system.

5.1 Raft basics

A Raft cluster contains several servers; five is a typical

number, which allows the system to tolerate two failures.

At any given time each server is in one of three states:

leader, follower, or candidate. In normal operation there

is exactly one leader and all of the other servers are fol-

lowers. Followers are passive: they issue no requests on

their own but simply respond to requests from leaders

and candidates. The leader handles all client requests (if

a client contacts a follower, the follower redirects it to the

leader). The third state, candidate, is used to elect a new

leader as described in Section 5.2. Figure 4 shows the

states and their transitions; the transitions are discussed

below.

Raft divides time into terms of arbitrary length, as

shown in Figure 5. Terms are numbered with consecutive

integers. Each term begins with an election, in which one

or more candidates attempt to become leader as described

in Section 5.2. If a candidate wins the election, then it

serves as leader for the rest of the term. In some situations

an election will result in a split vote. In this case the term

will end with no leader; a new term (with a new election)

Figure 4: Server states. Followers only respond to requests

from other servers. If a follower receives no communication,

it becomes a candidate and initiates an election. A candidate

that receives votes from a majority of the full cluster becomes

the new leader. Leaders typically operate until they fail.

Figure 5: Time is divided into terms, and each term begins

with an election. After a successful election, a single leader

manages the cluster until the end of the term. Some elections

fail, in which case the term ends without choosing a leader.

The transitions between terms may be observed at different

times on different servers.

will begin shortly. Raft ensures that there is at most one

leader in a given term.

Different servers may observe the transitions between

terms at different times, and in some situations a server

may not observe an election or even entire terms. Terms

act as a logical clock [14] in Raft, and they allow servers

to detect obsolete information such as stale leaders. Each

server stores a current term number, which increases

monotonically over time. Current terms are exchanged

whenever servers communicate; if one server’s current

term is smaller than the other’s, then it updates its current

term to the larger value. If a candidate or leader discovers

that its term is out of date, it immediately reverts to fol-

lower state. If a server receives a request with a stale term

number, it rejects the request.

Raft servers communicate using remote procedure calls

(RPCs), and the basic consensus algorithm requires only

two types of RPCs. RequestVote RPCs are initiated by

candidates during elections (Section 5.2), and Append-

Entries RPCs are initiated by leaders to replicate log en-

tries and to provide a form of heartbeat (Section 5.3). Sec-

tion 7 adds a third RPC for transferring snapshots between

servers. Servers retry RPCs if they do not receive a re-

sponse in a timely manner, and they issue RPCs in parallel

for best performance.

5.2 Leader election

Raft uses a heartbeat mechanism to trigger leader elec-

tion. When servers start up, they begin as followers. A

server remains in follower state as long as it receives valid
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RPCs from a leader or candidate. Leaders send periodic

heartbeats (AppendEntries RPCs that carry no log entries)

to all followers in order to maintain their authority. If a

follower receives no communication over a period of time

called the election timeout, then it assumes there is no vi-

able leader and begins an election to choose a new leader.

To begin an election, a follower increments its current

term and transitions to candidate state. It then votes for

itself and issues RequestVote RPCs in parallel to each of

the other servers in the cluster. A candidate continues in

this state until one of three things happens: (a) it wins the

election, (b) another server establishes itself as leader, or

(c) a period of time goes by with no winner. These out-

comes are discussed separately in the paragraphs below.

A candidate wins an election if it receives votes from

a majority of the servers in the full cluster for the same

term. Each server will vote for at most one candidate in a

given term, on a first-come-first-served basis (note: Sec-

tion 5.4 adds an additional restriction on votes). The ma-

jority rule ensures that at most one candidate can win the

election for a particular term (the Election Safety Prop-

erty in Figure 3). Once a candidate wins an election, it

becomes leader. It then sends heartbeat messages to all of

the other servers to establish its authority and prevent new

elections.

While waiting for votes, a candidate may receive an

AppendEntries RPC from another server claiming to be

leader. If the leader’s term (included in its RPC) is at least

as large as the candidate’s current term, then the candidate

recognizes the leader as legitimate and returns to follower

state. If the term in the RPC is smaller than the candidate’s

current term, then the candidate rejects the RPC and con-

tinues in candidate state.

The third possible outcome is that a candidate neither

wins nor loses the election: if many followers become

candidates at the same time, votes could be split so that

no candidate obtains a majority. When this happens, each

candidate will time out and start a new election by incre-

menting its term and initiating another round of Request-

Vote RPCs. However, without extra measures split votes

could repeat indefinitely.

Raft uses randomized election timeouts to ensure that

split votes are rare and that they are resolved quickly. To

prevent split votes in the first place, election timeouts are

chosen randomly from a fixed interval (e.g., 150–300ms).

This spreads out the servers so that in most cases only a

single server will time out; it wins the election and sends

heartbeats before any other servers time out. The same

mechanism is used to handle split votes. Each candidate

restarts its randomized election timeout at the start of an

election, and it waits for that timeout to elapse before

starting the next election; this reduces the likelihood of

another split vote in the new election. Section 9.3 shows

that this approach elects a leader rapidly.

Figure 6: Logs are composed of entries, which are numbered

sequentially. Each entry contains the term in which it was

created (the number in each box) and a command for the state

machine. An entry is considered committed if it is safe for that

entry to be applied to state machines.

Elections are an example of how understandability

guided our choice between design alternatives. Initially

we planned to use a ranking system: each candidate was

assigned a unique rank, which was used to select between

competing candidates. If a candidate discovered another

candidate with higher rank, it would return to follower

state so that the higher ranking candidate could more eas-

ily win the next election. We found that this approach

created subtle issues around availability (a lower-ranked

server might need to time out and become a candidate

again if a higher-ranked server fails, but if it does so too

soon, it can reset progress towards electing a leader). We

made adjustments to the algorithm several times, but after

each adjustment new corner cases appeared. Eventually

we concluded that the randomized retry approach is more

obvious and understandable.

5.3 Log replication

Once a leader has been elected, it begins servicing

client requests. Each client request contains a command to

be executed by the replicated state machines. The leader

appends the command to its log as a new entry, then is-

sues AppendEntries RPCs in parallel to each of the other

servers to replicate the entry. When the entry has been

safely replicated (as described below), the leader applies

the entry to its state machine and returns the result of that

execution to the client. If followers crash or run slowly,

or if network packets are lost, the leader retries Append-

Entries RPCs indefinitely (even after it has responded to

the client) until all followers eventually store all log en-

tries.

Logs are organized as shown in Figure 6. Each log en-

try stores a state machine command along with the term

number when the entry was received by the leader. The

term numbers in log entries are used to detect inconsis-

tencies between logs and to ensure some of the properties

in Figure 3. Each log entry also has an integer index iden-
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tifying its position in the log.

The leader decides when it is safe to apply a log en-

try to the state machines; such an entry is called commit-

ted. Raft guarantees that committed entries are durable

and will eventually be executed by all of the available

state machines. A log entry is committed once the leader

that created the entry has replicated it on a majority of

the servers (e.g., entry 7 in Figure 6). This also commits

all preceding entries in the leader’s log, including entries

created by previous leaders. Section 5.4 discusses some

subtleties when applying this rule after leader changes,

and it also shows that this definition of commitment is

safe. The leader keeps track of the highest index it knows

to be committed, and it includes that index in future

AppendEntries RPCs (including heartbeats) so that the

other servers eventually find out. Once a follower learns

that a log entry is committed, it applies the entry to its

local state machine (in log order).

We designed the Raft log mechanism to maintain a high

level of coherency between the logs on different servers.

Not only does this simplify the system’s behavior and

make it more predictable, but it is an important component

of ensuring safety. Raft maintains the following proper-

ties, which together constitute the Log Matching Property

in Figure 3:

• If two entries in different logs have the same index

and term, then they store the same command.

• If two entries in different logs have the same index

and term, then the logs are identical in all preceding

entries.

The first property follows from the fact that a leader

creates at most one entry with a given log index in a given

term, and log entries never change their position in the

log. The second property is guaranteed by a simple con-

sistency check performed by AppendEntries. When send-

ing an AppendEntries RPC, the leader includes the index

and term of the entry in its log that immediately precedes

the new entries. If the follower does not find an entry in

its log with the same index and term, then it refuses the

new entries. The consistency check acts as an induction

step: the initial empty state of the logs satisfies the Log

Matching Property, and the consistency check preserves

the Log Matching Property whenever logs are extended.

As a result, whenever AppendEntries returns successfully,

the leader knows that the follower’s log is identical to its

own log up through the new entries.

During normal operation, the logs of the leader and

followers stay consistent, so the AppendEntries consis-

tency check never fails. However, leader crashes can leave

the logs inconsistent (the old leader may not have fully

replicated all of the entries in its log). These inconsisten-

cies can compound over a series of leader and follower

crashes. Figure 7 illustrates the ways in which followers’

logs may differ from that of a new leader. A follower may

Figure 7: When the leader at the top comes to power, it is

possible that any of scenarios (a–f) could occur in follower

logs. Each box represents one log entry; the number in the

box is its term. A follower may be missing entries (a–b), may

have extra uncommitted entries (c–d), or both (e–f). For ex-

ample, scenario (f) could occur if that server was the leader

for term 2, added several entries to its log, then crashed before

committing any of them; it restarted quickly, became leader

for term 3, and added a few more entries to its log; before any

of the entries in either term 2 or term 3 were committed, the

server crashed again and remained down for several terms.

be missing entries that are present on the leader, it may

have extra entries that are not present on the leader, or

both. Missing and extraneous entries in a log may span

multiple terms.

In Raft, the leader handles inconsistencies by forcing

the followers’ logs to duplicate its own. This means that

conflicting entries in follower logs will be overwritten

with entries from the leader’s log. Section 5.4 will show

that this is safe when coupled with one more restriction.

To bring a follower’s log into consistency with its own,

the leader must find the latest log entry where the two

logs agree, delete any entries in the follower’s log after

that point, and send the follower all of the leader’s entries

after that point. All of these actions happen in response

to the consistency check performed by AppendEntries

RPCs. The leader maintains a nextIndex for each follower,

which is the index of the next log entry the leader will

send to that follower. When a leader first comes to power,

it initializes all nextIndex values to the index just after the

last one in its log (11 in Figure 7). If a follower’s log is

inconsistent with the leader’s, the AppendEntries consis-

tency check will fail in the next AppendEntries RPC. Af-

ter a rejection, the leader decrements nextIndex and retries

the AppendEntries RPC. Eventually nextIndex will reach

a point where the leader and follower logs match. When

this happens, AppendEntries will succeed, which removes

any conflicting entries in the follower’s log and appends

entries from the leader’s log (if any). Once AppendEntries

succeeds, the follower’s log is consistent with the leader’s,

and it will remain that way for the rest of the term.

If desired, the protocol can be optimized to reduce the

number of rejected AppendEntries RPCs. For example,

when rejecting an AppendEntries request, the follower
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can include the term of the conflicting entry and the first

index it stores for that term. With this information, the

leader can decrement nextIndex to bypass all of the con-

flicting entries in that term; one AppendEntries RPC will

be required for each term with conflicting entries, rather

than one RPC per entry. In practice, we doubt this opti-

mization is necessary, since failures happen infrequently

and it is unlikely that there will be many inconsistent en-

tries.

With this mechanism, a leader does not need to take any

special actions to restore log consistency when it comes to

power. It just begins normal operation, and the logs auto-

matically converge in response to failures of the Append-

Entries consistency check. A leader never overwrites or

deletes entries in its own log (the Leader Append-Only

Property in Figure 3).

This log replication mechanism exhibits the desirable

consensus properties described in Section 2: Raft can ac-

cept, replicate, and apply new log entries as long as a ma-

jority of the servers are up; in the normal case a new entry

can be replicated with a single round of RPCs to a ma-

jority of the cluster; and a single slow follower will not

impact performance.

5.4 Safety

The previous sections described how Raft elects lead-

ers and replicates log entries. However, the mechanisms

described so far are not quite sufficient to ensure that each

state machine executes exactly the same commands in the

same order. For example, a follower might be unavailable

while the leader commits several log entries, then it could

be elected leader and overwrite these entries with new

ones; as a result, different state machines might execute

different command sequences.

This section completes the Raft algorithm by adding a

restriction on which servers may be elected leader. The

restriction ensures that the leader for any given term con-

tains all of the entries committed in previous terms (the

Leader Completeness Property from Figure 3). Given the

election restriction, we then make the rules for commit-

ment more precise. Finally, we present a proof sketch for

the Leader Completeness Property and show how it leads

to correct behavior of the replicated state machine.

5.4.1 Election restriction

In any leader-based consensus algorithm, the leader

must eventually store all of the committed log entries. In

some consensus algorithms, such as Viewstamped Repli-

cation [22], a leader can be elected even if it doesn’t

initially contain all of the committed entries. These al-

gorithms contain additional mechanisms to identify the

missing entries and transmit them to the new leader, ei-

ther during the election process or shortly afterwards. Un-

fortunately, this results in considerable additional mecha-

nism and complexity. Raft uses a simpler approach where

it guarantees that all the committed entries from previous

Figure 8: A time sequence showing why a leader cannot de-

termine commitment using log entries from older terms. In

(a) S1 is leader and partially replicates the log entry at index

2. In (b) S1 crashes; S5 is elected leader for term 3 with votes

from S3, S4, and itself, and accepts a different entry at log

index 2. In (c) S5 crashes; S1 restarts, is elected leader, and

continues replication. At this point, the log entry from term 2

has been replicated on a majority of the servers, but it is not

committed. If S1 crashes as in (d), S5 could be elected leader

(with votes from S2, S3, and S4) and overwrite the entry with

its own entry from term 3. However, if S1 replicates an en-

try from its current term on a majority of the servers before

crashing, as in (e), then this entry is committed (S5 cannot

win an election). At this point all preceding entries in the log

are committed as well.

terms are present on each new leader from the moment of

its election, without the need to transfer those entries to

the leader. This means that log entries only flow in one di-

rection, from leaders to followers, and leaders never over-

write existing entries in their logs.

Raft uses the voting process to prevent a candidate from

winning an election unless its log contains all committed

entries. A candidate must contact a majority of the cluster

in order to be elected, which means that every committed

entry must be present in at least one of those servers. If the

candidate’s log is at least as up-to-date as any other log

in that majority (where “up-to-date” is defined precisely

below), then it will hold all the committed entries. The

RequestVote RPC implements this restriction: the RPC

includes information about the candidate’s log, and the

voter denies its vote if its own log is more up-to-date than

that of the candidate.

Raft determines which of two logs is more up-to-date

by comparing the index and term of the last entries in the

logs. If the logs have last entries with different terms, then

the log with the later term is more up-to-date. If the logs

end with the same term, then whichever log is longer is

more up-to-date.

5.4.2 Committing entries from previous terms

As described in Section 5.3, a leader knows that an en-

try from its current term is committed once that entry is

stored on a majority of the servers. If a leader crashes be-

fore committing an entry, future leaders will attempt to

finish replicating the entry. However, a leader cannot im-

mediately conclude that an entry from a previous term is

committed once it is stored on a majority of servers. Fig-
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Figure 9: If S1 (leader for term T) commits a new log entry

from its term, and S5 is elected leader for a later term U, then

there must be at least one server (S3) that accepted the log

entry and also voted for S5.

ure 8 illustrates a situation where an old log entry is stored

on a majority of servers, yet can still be overwritten by a

future leader.

To eliminate problems like the one in Figure 8, Raft

never commits log entries from previous terms by count-

ing replicas. Only log entries from the leader’s current

term are committed by counting replicas; once an entry

from the current term has been committed in this way,

then all prior entries are committed indirectly because

of the Log Matching Property. There are some situations

where a leader could safely conclude that an older log en-

try is committed (for example, if that entry is stored on ev-

ery server), but Raft takes a more conservative approach

for simplicity.

Raft incurs this extra complexity in the commitment

rules because log entries retain their original term num-

bers when a leader replicates entries from previous

terms. In other consensus algorithms, if a new leader re-

replicates entries from prior “terms,” it must do so with

its new “term number.” Raft’s approach makes it easier

to reason about log entries, since they maintain the same

term number over time and across logs. In addition, new

leaders in Raft send fewer log entries from previous terms

than in other algorithms (other algorithms must send re-

dundant log entries to renumber them before they can be

committed).

5.4.3 Safety argument

Given the complete Raft algorithm, we can now ar-

gue more precisely that the Leader Completeness Prop-

erty holds (this argument is based on the safety proof; see

Section 9.2). We assume that the Leader Completeness

Property does not hold, then we prove a contradiction.

Suppose the leader for term T (leaderT) commits a log

entry from its term, but that log entry is not stored by the

leader of some future term. Consider the smallest term U

> T whose leader (leaderU) does not store the entry.

1. The committed entry must have been absent from

leaderU’s log at the time of its election (leaders never

delete or overwrite entries).

2. leaderT replicated the entry on a majority of the clus-

ter, and leaderU received votes from a majority of

the cluster. Thus, at least one server (“the voter”)

both accepted the entry from leaderT and voted for

leaderU, as shown in Figure 9. The voter is key to

reaching a contradiction.

3. The voter must have accepted the committed entry

from leaderT before voting for leaderU; otherwise it

would have rejected the AppendEntries request from

leaderT (its current term would have been higher than

T).

4. The voter still stored the entry when it voted for

leaderU, since every intervening leader contained the

entry (by assumption), leaders never remove entries,

and followers only remove entries if they conflict

with the leader.

5. The voter granted its vote to leaderU, so leaderU’s

log must have been as up-to-date as the voter’s. This

leads to one of two contradictions.

6. First, if the voter and leaderU shared the same last

log term, then leaderU’s log must have been at least

as long as the voter’s, so its log contained every entry

in the voter’s log. This is a contradiction, since the

voter contained the committed entry and leaderU was

assumed not to.

7. Otherwise, leaderU’s last log term must have been

larger than the voter’s. Moreover, it was larger than

T, since the voter’s last log term was at least T (it con-

tains the committed entry from term T). The earlier

leader that created leaderU’s last log entry must have

contained the committed entry in its log (by assump-

tion). Then, by the Log Matching Property, leaderU’s

log must also contain the committed entry, which is

a contradiction.

8. This completes the contradiction. Thus, the leaders

of all terms greater than T must contain all entries

from term T that are committed in term T.

9. The Log Matching Property guarantees that future

leaders will also contain entries that are committed

indirectly, such as index 2 in Figure 8(d).

Given the Leader Completeness Property, we can prove

the State Machine Safety Property from Figure 3, which

states that if a server has applied a log entry at a given

index to its state machine, no other server will ever apply a

different log entry for the same index. At the time a server

applies a log entry to its state machine, its log must be

identical to the leader’s log up through that entry and the

entry must be committed. Now consider the lowest term

in which any server applies a given log index; the Log

Completeness Property guarantees that the leaders for all

higher terms will store that same log entry, so servers that

apply the index in later terms will apply the same value.

Thus, the State Machine Safety Property holds.

Finally, Raft requires servers to apply entries in log in-

dex order. Combined with the State Machine Safety Prop-

erty, this means that all servers will apply exactly the same

set of log entries to their state machines, in the same order.
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5.5 Follower and candidate crashes

Until this point we have focused on leader failures. Fol-

lower and candidate crashes are much simpler to han-

dle than leader crashes, and they are both handled in the

same way. If a follower or candidate crashes, then fu-

ture RequestVote and AppendEntries RPCs sent to it will

fail. Raft handles these failures by retrying indefinitely;

if the crashed server restarts, then the RPC will complete

successfully. If a server crashes after completing an RPC

but before responding, then it will receive the same RPC

again after it restarts. Raft RPCs are idempotent, so this

causes no harm. For example, if a follower receives an

AppendEntries request that includes log entries already

present in its log, it ignores those entries in the new re-

quest.

5.6 Timing and availability

One of our requirements for Raft is that safety must

not depend on timing: the system must not produce incor-

rect results just because some event happens more quickly

or slowly than expected. However, availability (the ability

of the system to respond to clients in a timely manner)

must inevitably depend on timing. For example, if mes-

sage exchanges take longer than the typical time between

server crashes, candidates will not stay up long enough to

win an election; without a steady leader, Raft cannot make

progress.

Leader election is the aspect of Raft where timing is

most critical. Raft will be able to elect and maintain a

steady leader as long as the system satisfies the follow-

ing timing requirement:

broadcastTime ≪ electionTimeout ≪ MTBF

In this inequality broadcastTime is the average time it

takes a server to send RPCs in parallel to every server

in the cluster and receive their responses; electionTime-

out is the election timeout described in Section 5.2; and

MTBF is the average time between failures for a single

server. The broadcast time should be an order of mag-

nitude less than the election timeout so that leaders can

reliably send the heartbeat messages required to keep fol-

lowers from starting elections; given the randomized ap-

proach used for election timeouts, this inequality also

makes split votes unlikely. The election timeout should be

a few orders of magnitude less than MTBF so that the sys-

tem makes steady progress. When the leader crashes, the

system will be unavailable for roughly the election time-

out; we would like this to represent only a small fraction

of overall time.

The broadcast time and MTBF are properties of the un-

derlying system, while the election timeout is something

we must choose. Raft’s RPCs typically require the recip-

ient to persist information to stable storage, so the broad-

cast time may range from 0.5ms to 20ms, depending on

storage technology. As a result, the election timeout is

likely to be somewhere between 10ms and 500ms. Typical

Figure 10: Switching directly from one configuration to an-

other is unsafe because different servers will switch at dif-

ferent times. In this example, the cluster grows from three

servers to five. Unfortunately, there is a point in time where

two different leaders can be elected for the same term, one

with a majority of the old configuration (Cold) and another

with a majority of the new configuration (Cnew).

server MTBFs are several months or more, which easily

satisfies the timing requirement.

6 Cluster membership changes
Up until now we have assumed that the cluster config-

uration (the set of servers participating in the consensus

algorithm) is fixed. In practice, it will occasionally be nec-

essary to change the configuration, for example to replace

servers when they fail or to change the degree of replica-

tion. Although this can be done by taking the entire cluster

off-line, updating configuration files, and then restarting

the cluster, this would leave the cluster unavailable dur-

ing the changeover. In addition, if there are any manual

steps, they risk operator error. In order to avoid these is-

sues, we decided to automate configuration changes and

incorporate them into the Raft consensus algorithm.

For the configuration change mechanism to be safe,

there must be no point during the transition where it

is possible for two leaders to be elected for the same

term. Unfortunately, any approach where servers switch

directly from the old configuration to the new configura-

tion is unsafe. It isn’t possible to atomically switch all of

the servers at once, so the cluster can potentially split into

two independent majorities during the transition (see Fig-

ure 10).

In order to ensure safety, configuration changes must

use a two-phase approach. There are a variety of ways

to implement the two phases. For example, some systems

(e.g., [22]) use the first phase to disable the old configura-

tion so it cannot process client requests; then the second

phase enables the new configuration. In Raft the cluster

first switches to a transitional configuration we call joint

consensus; once the joint consensus has been committed,

the system then transitions to the new configuration. The

joint consensus combines both the old and new configu-

rations:

• Log entries are replicated to all servers in both con-

figurations.
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Figure 11: Timeline for a configuration change. Dashed lines

show configuration entries that have been created but not

committed, and solid lines show the latest committed configu-

ration entry. The leader first creates the Cold,new configuration

entry in its log and commits it to Cold,new (a majority of Cold

and a majority of Cnew). Then it creates the Cnew entry and

commits it to a majority of Cnew. There is no point in time in

which Cold and Cnew can both make decisions independently.

• Any server from either configuration may serve as

leader.

• Agreement (for elections and entry commitment) re-

quires separate majorities from both the old and new

configurations.

The joint consensus allows individual servers to transition

between configurations at different times without com-

promising safety. Furthermore, joint consensus allows the

cluster to continue servicing client requests throughout

the configuration change.

Cluster configurations are stored and communicated

using special entries in the replicated log; Figure 11 illus-

trates the configuration change process. When the leader

receives a request to change the configuration from Cold

to Cnew, it stores the configuration for joint consensus

(Cold,new in the figure) as a log entry and replicates that

entry using the mechanisms described previously. Once a

given server adds the new configuration entry to its log,

it uses that configuration for all future decisions (a server

always uses the latest configuration in its log, regardless

of whether the entry is committed). This means that the

leader will use the rules of Cold,new to determine when the

log entry for Cold,new is committed. If the leader crashes,

a new leader may be chosen under either Cold or Cold,new,

depending on whether the winning candidate has received

Cold,new. In any case, Cnew cannot make unilateral deci-

sions during this period.

Once Cold,new has been committed, neitherCold nor Cnew

can make decisions without approval of the other, and the

Leader Completeness Property ensures that only servers

with the Cold,new log entry can be elected as leader. It is

now safe for the leader to create a log entry describing

Cnew and replicate it to the cluster. Again, this configura-

tion will take effect on each server as soon as it is seen.

When the new configuration has been committed under

the rules of Cnew, the old configuration is irrelevant and

servers not in the new configuration can be shut down. As

shown in Figure 11, there is no time when Cold and Cnew

can both make unilateral decisions; this guarantees safety.

There are three more issues to address for reconfigura-

tion. The first issue is that new servers may not initially

store any log entries. If they are added to the cluster in

this state, it could take quite a while for them to catch

up, during which time it might not be possible to com-

mit new log entries. In order to avoid availability gaps,

Raft introduces an additional phase before the configu-

ration change, in which the new servers join the cluster

as non-voting members (the leader replicates log entries

to them, but they are not considered for majorities). Once

the new servers have caught up with the rest of the cluster,

the reconfiguration can proceed as described above.

The second issue is that the cluster leader may not be

part of the new configuration. In this case, the leader steps

down (returns to follower state) once it has committed the

Cnew log entry. This means that there will be a period of

time (while it is committing Cnew) when the leader is man-

aging a cluster that does not include itself; it replicates log

entries but does not count itself in majorities. The leader

transition occurs when Cnew is committed because this is

the first point when the new configuration can operate in-

dependently (it will always be possible to choose a leader

from Cnew). Before this point, it may be the case that only

a server from Cold can be elected leader.

The third issue is that removed servers (those not in

Cnew) can disrupt the cluster. These servers will not re-

ceive heartbeats, so they will time out and start new elec-

tions. They will then send RequestVote RPCs with new

term numbers, and this will cause the current leader to

revert to follower state. A new leader will eventually be

elected, but the removed servers will time out again and

the process will repeat, resulting in poor availability.

To prevent this problem, servers disregard RequestVote

RPCs when they believe a current leader exists. Specif-

ically, if a server receives a RequestVote RPC within

the minimum election timeout of hearing from a cur-

rent leader, it does not update its term or grant its vote.

This does not affect normal elections, where each server

waits at least a minimum election timeout before starting

an election. However, it helps avoid disruptions from re-

moved servers: if a leader is able to get heartbeats to its

cluster, then it will not be deposed by larger term num-

bers.

7 Log compaction
Raft’s log grows during normal operation to incorpo-

rate more client requests, but in a practical system, it can-

not grow without bound. As the log grows longer, it oc-

cupies more space and takes more time to replay. This

will eventually cause availability problems without some

mechanism to discard obsolete information that has accu-

mulated in the log.

Snapshotting is the simplest approach to compaction.

In snapshotting, the entire current system state is written

to a snapshot on stable storage, then the entire log up to
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Figure 12: A server replaces the committed entries in its log

(indexes 1 through 5) with a new snapshot, which stores just

the current state (variables x and y in this example). The snap-

shot’s last included index and term serve to position the snap-

shot in the log preceding entry 6.

that point is discarded. Snapshotting is used in Chubby

and ZooKeeper, and the remainder of this section de-

scribes snapshotting in Raft.

Incremental approaches to compaction, such as log

cleaning [36] and log-structured merge trees [30, 5], are

also possible. These operate on a fraction of the data at

once, so they spread the load of compaction more evenly

over time. They first select a region of data that has ac-

cumulated many deleted and overwritten objects, then

they rewrite the live objects from that region more com-

pactly and free the region. This requires significant addi-

tional mechanism and complexity compared to snapshot-

ting, which simplifies the problem by always operating

on the entire data set. While log cleaning would require

modifications to Raft, state machines can implement LSM

trees using the same interface as snapshotting.

Figure 12 shows the basic idea of snapshotting in Raft.

Each server takes snapshots independently, covering just

the committed entries in its log. Most of the work con-

sists of the state machine writing its current state to the

snapshot. Raft also includes a small amount of metadata

in the snapshot: the last included index is the index of the

last entry in the log that the snapshot replaces (the last en-

try the state machine had applied), and the last included

term is the term of this entry. These are preserved to sup-

port the AppendEntries consistency check for the first log

entry following the snapshot, since that entry needs a pre-

vious log index and term. To enable cluster membership

changes (Section 6), the snapshot also includes the latest

configuration in the log as of last included index. Once a

server completes writing a snapshot, it may delete all log

entries up through the last included index, as well as any

prior snapshot.

Although servers normally take snapshots indepen-

dently, the leader must occasionally send snapshots to

followers that lag behind. This happens when the leader

has already discarded the next log entry that it needs to

send to a follower. Fortunately, this situation is unlikely

in normal operation: a follower that has kept up with the

Invoked by leader to send chunks of a snapshot to a follower.
Leaders always send chunks in order.

Arguments:
term leader’s term

leaderId so follower can redirect clients
lastIncludedIndex the snapshot replaces all entries up through

and including this index

lastIncludedTerm term of lastIncludedIndex
offset byte offset where chunk is positioned in the

snapshot file
data[] raw bytes of the snapshot chunk, starting at

offset

done true if this is the last chunk

Results:

term currentTerm, for leader to update itself

Receiver implementation:
1. Reply immediately if term < currentTerm

2. Create new snapshot file if first chunk (offset is 0)
3. Write data into snapshot file at given offset

4. Reply and wait for more data chunks if done is false

5. Save snapshot file, discard any existing or partial snapshot
with a smaller index

6. If existing log entry has same index and term as snapshot’s
last included entry, retain log entries following it and reply

7. Discard the entire log

8. Reset state machine using snapshot contents (and load
snapshot’s cluster configuration)

InstallSnapshot RPC

Figure 13: A summary of the InstallSnapshot RPC. Snap-

shots are split into chunks for transmission; this gives the fol-

lower a sign of life with each chunk, so it can reset its election

timer.

leader would already have this entry. However, an excep-

tionally slow follower or a new server joining the cluster

(Section 6) would not. The way to bring such a follower

up-to-date is for the leader to send it a snapshot over the

network.

The leader uses a new RPC called InstallSnapshot to

send snapshots to followers that are too far behind; see

Figure 13. When a follower receives a snapshot with this

RPC, it must decide what to do with its existing log en-

tries. Usually the snapshot will contain new information

not already in the recipient’s log. In this case, the follower

discards its entire log; it is all superseded by the snapshot

and may possibly have uncommitted entries that conflict

with the snapshot. If instead the follower receives a snap-

shot that describes a prefix of its log (due to retransmis-

sion or by mistake), then log entries covered by the snap-

shot are deleted but entries following the snapshot are still

valid and must be retained.

This snapshotting approach departs from Raft’s strong

leader principle, since followers can take snapshots with-

out the knowledge of the leader. However, we think this

departure is justified. While having a leader helps avoid

conflicting decisions in reaching consensus, consensus

has already been reached when snapshotting, so no de-

cisions conflict. Data still only flows from leaders to fol-
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lowers, just followers can now reorganize their data.

We considered an alternative leader-based approach in

which only the leader would create a snapshot, then it

would send this snapshot to each of its followers. How-

ever, this has two disadvantages. First, sending the snap-

shot to each follower would waste network bandwidth and

slow the snapshotting process. Each follower already has

the information needed to produce its own snapshots, and

it is typically much cheaper for a server to produce a snap-

shot from its local state than it is to send and receive one

over the network. Second, the leader’s implementation

would be more complex. For example, the leader would

need to send snapshots to followers in parallel with repli-

cating new log entries to them, so as not to block new

client requests.

There are two more issues that impact snapshotting per-

formance. First, servers must decide when to snapshot. If

a server snapshots too often, it wastes disk bandwidth and

energy; if it snapshots too infrequently, it risks exhaust-

ing its storage capacity, and it increases the time required

to replay the log during restarts. One simple strategy is

to take a snapshot when the log reaches a fixed size in

bytes. If this size is set to be significantly larger than the

expected size of a snapshot, then the disk bandwidth over-

head for snapshotting will be small.

The second performance issue is that writing a snap-

shot can take a significant amount of time, and we do

not want this to delay normal operations. The solution is

to use copy-on-write techniques so that new updates can

be accepted without impacting the snapshot being writ-

ten. For example, state machines built with functional data

structures naturally support this. Alternatively, the operat-

ing system’s copy-on-write support (e.g., fork on Linux)

can be used to create an in-memory snapshot of the entire

state machine (our implementation uses this approach).

8 Client interaction
This section describes how clients interact with Raft,

including how clients find the cluster leader and how Raft

supports linearizable semantics [10]. These issues apply

to all consensus-based systems, and Raft’s solutions are

similar to other systems.

Clients of Raft send all of their requests to the leader.

When a client first starts up, it connects to a randomly-

chosen server. If the client’s first choice is not the leader,

that server will reject the client’s request and supply in-

formation about the most recent leader it has heard from

(AppendEntries requests include the network address of

the leader). If the leader crashes, client requests will time

out; clients then try again with randomly-chosen servers.

Our goal for Raft is to implement linearizable seman-

tics (each operation appears to execute instantaneously,

exactly once, at some point between its invocation and

its response). However, as described so far Raft can exe-

cute a command multiple times: for example, if the leader

crashes after committing the log entry but before respond-

ing to the client, the client will retry the command with a

new leader, causing it to be executed a second time. The

solution is for clients to assign unique serial numbers to

every command. Then, the state machine tracks the latest

serial number processed for each client, along with the as-

sociated response. If it receives a command whose serial

number has already been executed, it responds immedi-

ately without re-executing the request.

Read-only operations can be handled without writing

anything into the log. However, with no additional mea-

sures, this would run the risk of returning stale data, since

the leader responding to the request might have been su-

perseded by a newer leader of which it is unaware. Lin-

earizable reads must not return stale data, and Raft needs

two extra precautions to guarantee this without using the

log. First, a leader must have the latest information on

which entries are committed. The Leader Completeness

Property guarantees that a leader has all committed en-

tries, but at the start of its term, it may not know which

those are. To find out, it needs to commit an entry from

its term. Raft handles this by having each leader com-

mit a blank no-op entry into the log at the start of its

term. Second, a leader must check whether it has been de-

posed before processing a read-only request (its informa-

tion may be stale if a more recent leader has been elected).

Raft handles this by having the leader exchange heart-

beat messages with a majority of the cluster before re-

sponding to read-only requests. Alternatively, the leader

could rely on the heartbeat mechanism to provide a form

of lease [9], but this would rely on timing for safety (it

assumes bounded clock skew).

9 Implementation and evaluation
We have implemented Raft as part of a replicated

state machine that stores configuration information for

RAMCloud [33] and assists in failover of the RAMCloud

coordinator. The Raft implementation contains roughly

2000 lines of C++ code, not including tests, comments, or

blank lines. The source code is freely available [23]. There

are also about 25 independent third-party open source im-

plementations [34] of Raft in various stages of develop-

ment, based on drafts of this paper. Also, various compa-

nies are deploying Raft-based systems [34].

The remainder of this section evaluates Raft using three

criteria: understandability, correctness, and performance.

9.1 Understandability

To measure Raft’s understandability relative to Paxos,

we conducted an experimental study using upper-level un-

dergraduate and graduate students in an Advanced Oper-

ating Systems course at Stanford University and a Dis-

tributed Computing course at U.C. Berkeley. We recorded

a video lecture of Raft and another of Paxos, and created

corresponding quizzes. The Raft lecture covered the con-

tent of this paper except for log compaction; the Paxos

13



 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

R
a

ft
 g

ra
d

e

Paxos grade

Raft then Paxos
Paxos then Raft

Figure 14: A scatter plot comparing 43 participants’ perfor-

mance on the Raft and Paxos quizzes. Points above the diag-

onal (33) represent participants who scored higher for Raft.

lecture covered enough material to create an equivalent

replicated state machine, including single-decree Paxos,

multi-decree Paxos, reconfiguration, and a few optimiza-

tions needed in practice (such as leader election). The

quizzes tested basic understanding of the algorithms and

also required students to reason about corner cases. Each

student watched one video, took the corresponding quiz,

watched the second video, and took the second quiz.

About half of the participants did the Paxos portion first

and the other half did the Raft portion first in order to

account for both individual differences in performance

and experience gained from the first portion of the study.

We compared participants’ scores on each quiz to deter-

mine whether participants showed a better understanding

of Raft.

We tried to make the comparison between Paxos and

Raft as fair as possible. The experiment favored Paxos in

two ways: 15 of the 43 participants reported having some

prior experience with Paxos, and the Paxos video is 14%

longer than the Raft video. As summarized in Table 1, we

have taken steps to mitigate potential sources of bias. All

of our materials are available for review [28, 31].

On average, participants scored 4.9 points higher on the

Raft quiz than on the Paxos quiz (out of a possible 60

points, the mean Raft score was 25.7 and the mean Paxos

score was 20.8); Figure 14 shows their individual scores.

A paired t-test states that, with 95% confidence, the true

distribution of Raft scores has a mean at least 2.5 points

larger than the true distribution of Paxos scores.

We also created a linear regression model that predicts

a new student’s quiz scores based on three factors: which

quiz they took, their degree of prior Paxos experience, and
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Figure 15: Using a 5-point scale, participants were asked

(left) which algorithm they felt would be easier to implement

in a functioning, correct, and efficient system, and (right)

which would be easier to explain to a CS graduate student.

the order in which they learned the algorithms. The model

predicts that the choice of quiz produces a 12.5-point dif-

ference in favor of Raft. This is significantly higher than

the observed difference of 4.9 points, because many of the

actual students had prior Paxos experience, which helped

Paxos considerably, whereas it helped Raft slightly less.

Curiously, the model also predicts scores 6.3 points lower

on Raft for people that have already taken the Paxos quiz;

although we don’t know why, this does appear to be sta-

tistically significant.

We also surveyed participants after their quizzes to see

which algorithm they felt would be easier to implement

or explain; these results are shown in Figure 15. An over-

whelming majority of participants reported Raft would be

easier to implement and explain (33 of 41 for each ques-

tion). However, these self-reported feelings may be less

reliable than participants’ quiz scores, and participants

may have been biased by knowledge of our hypothesis

that Raft is easier to understand.

A detailed discussion of the Raft user study is available

at [31].

9.2 Correctness

We have developed a formal specification and a proof

of safety for the consensus mechanism described in Sec-

tion 5. The formal specification [31] makes the informa-

tion summarized in Figure 2 completely precise using the

TLA+ specification language [17]. It is about 400 lines

long and serves as the subject of the proof. It is also use-

ful on its own for anyone implementing Raft. We have

mechanically proven the Log Completeness Property us-

ing the TLA proof system [7]. However, this proof relies

on invariants that have not been mechanically checked

(for example, we have not proven the type safety of the

specification). Furthermore, we have written an informal

proof [31] of the State Machine Safety property which

is complete (it relies on the specification alone) and rela-

Concern Steps taken to mitigate bias Materials for review [28, 31]

Equal lecture quality Same lecturer for both. Paxos lecture based on and improved from exist-

ing materials used in several universities. Paxos lecture is 14% longer.

videos

Equal quiz difficulty Questions grouped in difficulty and paired across exams. quizzes

Fair grading Used rubric. Graded in random order, alternating between quizzes. rubric

Table 1: Concerns of possible bias against Paxos in the study, steps taken to counter each, and additional materials available.
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Figure 16: The time to detect and replace a crashed leader.

The top graph varies the amount of randomness in election

timeouts, and the bottom graph scales the minimum election

timeout. Each line represents 1000 trials (except for 100 tri-

als for “150–150ms”) and corresponds to a particular choice

of election timeouts; for example, “150–155ms” means that

election timeouts were chosen randomly and uniformly be-

tween 150ms and 155ms. The measurements were taken on a

cluster of five servers with a broadcast time of roughly 15ms.

Results for a cluster of nine servers are similar.

tively precise (it is about 3500 words long).

9.3 Performance

Raft’s performance is similar to other consensus algo-

rithms such as Paxos. The most important case for per-

formance is when an established leader is replicating new

log entries. Raft achieves this using the minimal number

of messages (a single round-trip from the leader to half the

cluster). It is also possible to further improve Raft’s per-

formance. For example, it easily supports batching and

pipelining requests for higher throughput and lower la-

tency. Various optimizations have been proposed in the

literature for other algorithms; many of these could be ap-

plied to Raft, but we leave this to future work.

We used our Raft implementation to measure the per-

formance of Raft’s leader election algorithm and answer

two questions. First, does the election process converge

quickly? Second, what is the minimum downtime that can

be achieved after leader crashes?

To measure leader election, we repeatedly crashed the

leader of a cluster of five servers and timed how long it

took to detect the crash and elect a new leader (see Fig-

ure 16). To generate a worst-case scenario, the servers in

each trial had different log lengths, so some candidates

were not eligible to become leader. Furthermore, to en-

courage split votes, our test script triggered a synchro-

nized broadcast of heartbeat RPCs from the leader before

terminating its process (this approximates the behavior

of the leader replicating a new log entry prior to crash-

ing). The leader was crashed uniformly randomly within

its heartbeat interval, which was half of the minimum

election timeout for all tests. Thus, the smallest possible

downtime was about half of the minimum election time-

out.

The top graph in Figure 16 shows that a small amount

of randomization in the election timeout is enough to

avoid split votes in elections. In the absence of random-

ness, leader election consistently took longer than 10 sec-

onds in our tests due to many split votes. Adding just 5ms

of randomness helps significantly, resulting in a median

downtime of 287ms. Using more randomness improves

worst-case behavior: with 50ms of randomness the worst-

case completion time (over 1000 trials) was 513ms.

The bottom graph in Figure 16 shows that downtime

can be reduced by reducing the election timeout. With

an election timeout of 12–24ms, it takes only 35ms on

average to elect a leader (the longest trial took 152ms).

However, lowering the timeouts beyond this point violates

Raft’s timing requirement: leaders have difficulty broad-

casting heartbeats before other servers start new elections.

This can cause unnecessary leader changes and lower

overall system availability. We recommend using a con-

servative election timeout such as 150–300ms; such time-

outs are unlikely to cause unnecessary leader changes and

will still provide good availability.

10 Related work
There have been numerous publications related to con-

sensus algorithms, many of which fall into one of the fol-

lowing categories:

• Lamport’s original description of Paxos [15], and at-

tempts to explain it more clearly [16, 20, 21].

• Elaborations of Paxos, which fill in missing details

and modify the algorithm to provide a better founda-

tion for implementation [26, 39, 13].

• Systems that implement consensus algorithms, such

as Chubby [2, 4], ZooKeeper [11, 12], and Span-

ner [6]. The algorithms for Chubby and Spanner

have not been published in detail, though both claim

to be based on Paxos. ZooKeeper’s algorithm has

been published in more detail, but it is quite different

from Paxos.

• Performance optimizations that can be applied to

Paxos [18, 19, 3, 25, 1, 27].

• Oki and Liskov’s Viewstamped Replication (VR), an

alternative approach to consensus developed around

the same time as Paxos. The original description [29]

was intertwined with a protocol for distributed trans-

actions, but the core consensus protocol has been

separated in a recent update [22]. VR uses a leader-

based approach with many similarities to Raft.

The greatest difference between Raft and Paxos is

Raft’s strong leadership: Raft uses leader election as an

essential part of the consensus protocol, and it concen-
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trates as much functionality as possible in the leader. This

approach results in a simpler algorithm that is easier to

understand. For example, in Paxos, leader election is or-

thogonal to the basic consensus protocol: it serves only as

a performance optimization and is not required for achiev-

ing consensus. However, this results in additional mecha-

nism: Paxos includes both a two-phase protocol for basic

consensus and a separate mechanism for leader election.

In contrast, Raft incorporates leader election directly into

the consensus algorithm and uses it as the first of the two

phases of consensus. This results in less mechanism than

in Paxos.

Like Raft, VR and ZooKeeper are leader-based and

therefore share many of Raft’s advantages over Paxos.

However, Raft has less mechanism that VR or ZooKeeper

because it minimizes the functionality in non-leaders. For

example, log entries in Raft flow in only one direction:

outward from the leader in AppendEntries RPCs. In VR

log entries flow in both directions (leaders can receive

log entries during the election process); this results in

additional mechanism and complexity. The published de-

scription of ZooKeeper also transfers log entries both to

and from the leader, but the implementation is apparently

more like Raft [35].

Raft has fewer message types than any other algo-

rithm for consensus-based log replication that we are

aware of. For example, we counted the message types VR

and ZooKeeper use for basic consensus and membership

changes (excluding log compaction and client interaction,

as these are nearly independent of the algorithms). VR

and ZooKeeper each define 10 different message types,

while Raft has only 4 message types (two RPC requests

and their responses). Raft’s messages are a bit more dense

than the other algorithms’, but they are simpler collec-

tively. In addition, VR and ZooKeeper are described in

terms of transmitting entire logs during leader changes;

additional message types will be required to optimize

these mechanisms so that they are practical.

Raft’s strong leadership approach simplifies the algo-

rithm, but it precludes some performance optimizations.

For example, Egalitarian Paxos (EPaxos) can achieve

higher performance under some conditions with a lead-

erless approach [27]. EPaxos exploits commutativity in

state machine commands. Any server can commit a com-

mand with just one round of communication as long as

other commands that are proposed concurrently commute

with it. However, if commands that are proposed con-

currently do not commute with each other, EPaxos re-

quires an additional round of communication. Because

any server may commit commands, EPaxos balances load

well between servers and is able to achieve lower latency

than Raft in WAN settings. However, it adds significant

complexity to Paxos.

Several different approaches for cluster member-

ship changes have been proposed or implemented in

other work, including Lamport’s original proposal [15],

VR [22], and SMART [24]. We chose the joint consensus

approach for Raft because it leverages the rest of the con-

sensus protocol, so that very little additional mechanism

is required for membership changes. Lamport’s α-based

approach was not an option for Raft because it assumes

consensus can be reached without a leader. In comparison

to VR and SMART, Raft’s reconfiguration algorithm has

the advantage that membership changes can occur with-

out limiting the processing of normal requests; in con-

trast, VR stops all normal processing during configura-

tion changes, and SMART imposes an α-like limit on the

number of outstanding requests. Raft’s approach also adds

less mechanism than either VR or SMART.

11 Conclusion

Algorithms are often designed with correctness, effi-

ciency, and/or conciseness as the primary goals. Although

these are all worthy goals, we believe that understandabil-

ity is just as important. None of the other goals can be

achieved until developers render the algorithm into a prac-

tical implementation, which will inevitably deviate from

and expand upon the published form. Unless developers

have a deep understanding of the algorithm and can cre-

ate intuitions about it, it will be difficult for them to retain

its desirable properties in their implementation.

In this paper we addressed the issue of distributed con-

sensus, where a widely accepted but impenetrable algo-

rithm, Paxos, has challenged students and developers for

many years. We developed a new algorithm, Raft, which

we have shown to be more understandable than Paxos.

We also believe that Raft provides a better foundation

for system building. Using understandability as the pri-

mary design goal changed the way we approached the de-

sign of Raft; as the design progressed we found ourselves

reusing a few techniques repeatedly, such as decomposing

the problem and simplifying the state space. These tech-

niques not only improved the understandability of Raft

but also made it easier to convince ourselves of its cor-

rectness.

12 Acknowledgments

The user study would not have been possible with-

out the support of Ali Ghodsi, David Mazières, and the

students of CS 294-91 at Berkeley and CS 240 at Stan-

ford. Scott Klemmer helped us design the user study,

and Nelson Ray advised us on statistical analysis. The

Paxos slides for the user study borrowed heavily from

a slide deck originally created by Lorenzo Alvisi. Spe-

cial thanks go to David Mazières and Ezra Hoch for

finding subtle bugs in Raft. Many people provided help-

ful feedback on the paper and user study materials,

including Ed Bugnion, Michael Chan, Hugues Evrard,

16



Daniel Giffin, Arjun Gopalan, Jon Howell, Vimalkumar

Jeyakumar, Ankita Kejriwal, Aleksandar Kracun, Amit

Levy, Joel Martin, Satoshi Matsushita, Oleg Pesok, David

Ramos, Robbert van Renesse, Mendel Rosenblum, Nico-

las Schiper, Deian Stefan, Andrew Stone, Ryan Stutsman,

David Terei, Stephen Yang, Matei Zaharia, 24 anony-

mous conference reviewers (with duplicates), and espe-

cially our shepherd Eddie Kohler. Werner Vogels tweeted

a link to an earlier draft, which gave Raft significant ex-

posure. This work was supported by the Gigascale Sys-

tems Research Center and the Multiscale Systems Cen-

ter, two of six research centers funded under the Fo-

cus Center Research Program, a Semiconductor Research

Corporation program, by STARnet, a Semiconductor Re-

search Corporation program sponsored by MARCO and

DARPA, by the National Science Foundation under Grant

No. 0963859, and by grants from Facebook, Google, Mel-

lanox, NEC, NetApp, SAP, and Samsung. Diego Ongaro

is supported by The Junglee Corporation Stanford Gradu-

ate Fellowship.

References
[1] BOLOSKY, W. J., BRADSHAW, D., HAAGENS, R. B.,

KUSTERS, N. P., AND LI, P. Paxos replicated state

machines as the basis of a high-performance data store.

In Proc. NSDI’11, USENIX Conference on Networked

Systems Design and Implementation (2011), USENIX,

pp. 141–154.

[2] BURROWS, M. The Chubby lock service for loosely-

coupled distributed systems. In Proc. OSDI’06, Sympo-

sium on Operating Systems Design and Implementation

(2006), USENIX, pp. 335–350.

[3] CAMARGOS, L. J., SCHMIDT, R. M., AND PEDONE, F.

Multicoordinated Paxos. In Proc. PODC’07, ACM Sym-

posium on Principles of Distributed Computing (2007),

ACM, pp. 316–317.

[4] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J.

Paxos made live: an engineering perspective. In Proc.

PODC’07, ACM Symposium on Principles of Distributed

Computing (2007), ACM, pp. 398–407.

[5] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C.,

WALLACH, D. A., BURROWS, M., CHANDRA, T.,

FIKES, A., AND GRUBER, R. E. Bigtable: a distributed

storage system for structured data. In Proc. OSDI’06,

USENIX Symposium on Operating Systems Design and

Implementation (2006), USENIX, pp. 205–218.

[6] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A.,

FROST, C., FURMAN, J. J., GHEMAWAT, S., GUBAREV,

A., HEISER, C., HOCHSCHILD, P., HSIEH, W., KAN-

THAK, S., KOGAN, E., LI, H., LLOYD, A., MELNIK,

S., MWAURA, D., NAGLE, D., QUINLAN, S., RAO, R.,

ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C.,

WANG, R., AND WOODFORD, D. Spanner: Google’s

globally-distributed database. In Proc. OSDI’12, USENIX

Conference on Operating Systems Design and Implemen-

tation (2012), USENIX, pp. 251–264.

[7] COUSINEAU, D., DOLIGEZ, D., LAMPORT, L., MERZ,

S., RICKETTS, D., AND VANZETTO, H. TLA+ proofs.

In Proc. FM’12, Symposium on Formal Methods (2012),

D. Giannakopoulou and D. Méry, Eds., vol. 7436 of Lec-
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